185 research outputs found

    Exclusive e+e-, Di-photon and Di-jet Production at the Tevatron

    Full text link
    Results from studies on exclusive production of electron-position pair, di-photon, and di-jet production at CDF in proton-antiproton collisions at the Fermilab Tevatron are presented. The first observation and cross section measurements of exclusive e+e- and di-jet production in hadron-hadron collisions are emphasized.Comment: 4 pages, To be submitted to the proceedings of the 42nd Rencontres de Moriond - QCD and High Energy Hadronic Interactions, La Thuile, Italy, 17-24 March 200

    New Diffraction Results from the Tevatron

    Get PDF
    We present new results from studies on diffractive dijet production and exclusive production of dijet and diphoton obtained by the CDF Collaboration in proton-antiproton collisions at the Fermilab Tevatron.Comment: 4 pages, To be submitted to the proceedings of the 41st Rencontres de Moriond - QCD and High Energy Hadronic Interactions, La Thuile, Italy, 18-25 March 200

    Conformal Barrier and Hidden Local Symmetry Constraints: Walking Technirhos in LHC Diboson Channels

    Get PDF
    We expand the previous analyses of the conformal barrier on the walking technirho for the 2 TeV diboson excesses reported by the ATLAS collaboration, with a special emphasis on the hidden local symmetry (HLS) constraints. We first show that the Standard Model (SM) Higgs Lagrangian is equivalent to the scale-invariant nonlinear chiral Lagrangian, which is further gauge equivalent to the scale-invariant HLS model, with the scale symmetry realized nonlinearly via SM Higgs as a (pseudo-) dilaton. The scale symmetry forbids the new vector boson decay to the 125 GeV Higgs plus W/Z boson, in sharp contrast to the conventional "equivalence theorem" which is invalidated by the conformality. The HLS forbids mixing between the iso-triplet technirho's, rho_{Pi} and rho_{P}, of the one-family walking technicolor (with four doublets N_D=N_F/2=4), which, without the HLS, would be generated when switching on the standard model gauging. We also present updated analyses of the walking technrho's for the diboson excesses by fully incorporating the constraints from the conformal barrier and the HLS as well as possible higher order effects: still characteristic of the one-family walking technirho is its smallness of the decay width, roughly of order Gamma/M_rho ~ [3/N_C x 1/N_D] x [Gamma/M_rho]_{QCD} ~ 70 GeV/2TeV (N_D= N_C=4), in perfect agreement with the expected diboson resonance with Gamma<100 GeV. The model is so sharply distinguishable from other massive spin 1 models without the conformality and HLS that it is clearly testable at the LHC Run II. If the 2 TeV boson decay to WH/ZH is not observed in the ongoing Run II, then the conformality is operative on the 125 GeV Higgs, strongly suggesting that the 2 TeV excess events are responsible for the walking technirhos and the 125 GeV Higgs is the technidilaton.Comment: latex, 12 eps figures, 36 pages; minor corrections made in theory part, version published in NP

    2 TeV Walking Technirho at LHC?

    Get PDF
    The ATLAS collaboration has recently reported an excess of about 2.5 σ\sigma global significance at around 2 TeV in the diboson channel with the boson-tagged fat dijets, which may imply a new resonance beyond the standard model. We provide a possible explanation of the excess as the isospin-triplet technivector mesons (technirhos, denoted as ρΠ±,3\rho_\Pi^{\pm,3}) of the walking technicolor in the case of the one-family model as a benchmark. As the effective theory for the walking technicolor at the scales relevant to the LHC experiment, we take a scale-invariant version of the hidden local symmetry model so constructed as to accommodate technipions, technivector mesons, and the technidilaton in such a way that the model respects spontaneously broken chiral and scale symmetries of the underlying walking technicolor. In particular, the technidilaton, a (pseudo) Nambu-Goldstone boson of the (approximate) scale symmetry predicted in the walking technicolor, has been shown to be successfully identified with the 125 GeV Higgs. Currently available LHC limits on those technihadrons are used to fix the couplings of technivector mesons to the standard-model fermions and weak gauge bosons. We find that the technirho's are mainly produced through the Drell-Yan process and predominantly decay to the dibosons, which accounts for the currently reported excess at around 2 TeV. The consistency with the electroweak precision test and other possible discovery channels of the 2 TeV technirhos are also addressed.Comment: 8 pages, 4 eps figures, latex; version to appear in PL

    Discovery reach for wino and higgsino dark matter with a disappearing track signature at a 100 TeV pppp collider

    Full text link
    Within the theory of supersymmetry, the lightest neutralino is a dark matter candidate and is often assumed to be the lightest supersymmetric particle (LSP) as well. If the neutral wino or higgsino is dark matter, the upper limit of the LSP mass is determined by the observed relic density of dark matter. If the LSP is a nearly-pure neutral state of the wino or higgsino, the lightest chargino state is expected to have a significant lifetime due to a tiny mass difference between the LSP and the chargino. This article presents discovery potential of the 100 TeV future circular hadron collider (FCC) for the wino and higgsino dark matter using a disappearing-track signature. The search strategy to extend the discovery reach to the thermal limits of wino/higgsino dark matter is discussed with detailed studies on the background rate and the reference design of the FCC-hadron detector under possible running scenarios of the FCC-hadron machine. A proposal of modifying the detector layout and several ideas to improve the sensitivity further are also discussed.Comment: 10 pages, 7 figures, 4 table

    Resolution enhancement of one-dimensional molecular wavefunctions in plane-wave basis via quantum machine learning

    Full text link
    Super-resolution is a machine-learning technique in image processing which generates high-resolution images from low-resolution images. Inspired by this approach, we perform a numerical experiment of quantum machine learning, which takes low-resolution (low plane-wave energy cutoff) one-particle molecular wavefunctions in plane-wave basis as input and generates high-resolution (high plane-wave energy cutoff) wavefunctions in fictitious one-dimensional systems, and study the performance of different learning models. We show that the trained models can generate wavefunctions having higher fidelity values with respect to the ground-truth wavefunctions than a simple linear interpolation, and the results can be improved both qualitatively and quantitatively by including data-dependent information in the ansatz. On the other hand, the accuracy of the current approach deteriorates for wavefunctions calculated in electronic configurations not included in the training dataset. We also discuss the generalization of this approach to many-body electron wavefunctions.Comment: 13 pages, 18 figure

    Quantum Machine Learning in High Energy Physics

    Full text link
    Machine learning has been used in high energy physics since a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to combine quantum machine learning with High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future applications.Comment: 25 pages, 9 figures, submitted to Machine Learning: Science and Technology, Focus on Machine Learning for Fundamental Physics collectio

    Quantum Gate Pattern Recognition and Circuit Optimization for Scientific Applications

    Full text link
    There is no unique way to encode a quantum algorithm into a quantum circuit. With limited qubit counts, connectivities, and coherence times, circuit optimization is essential to make the best use of near-term quantum devices. We introduce two separate ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL. The first ingredient is a technique to recognize repeated patterns of quantum gates, opening up the possibility of future hardware co-optimization. The second ingredient is an approach to reduce circuit complexity by identifying zero- or low-amplitude computational basis states and redundant gates. As a demonstration, AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics. For this algorithm, our optimization scheme brings a significant reduction in the gate count without losing any accuracy compared to the original circuit. Additionally, we have investigated whether this can be demonstrated on a quantum computer using polynomial resources. Our technique is generic and can be useful for a wide variety of quantum algorithms.Comment: 22 pages, 16 figure
    corecore